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With the advent of the Mariner '71 Mission, NASA has been sending spacecraft

to orbit various distant bodies within the solar system. At present, there is still no

adequate theory describing the inherent state estimation accuracy, based on two-

way, coherent range-rate data. It is the purpose of this article to lay the groundwork

for a general elliptic theory, and in addition to provide an analytic solution for the

special case of circular orbits.

I. Introduction

When one begins to analyze a possible future mission

employing an orbiting spacecraft, it is desirable to know

the characteristics of the position and velocity errors of

that spacecraft, based on a single revolution of range-rate

data. To know these errors as a function of orbit shape,

size, and orientation with respect to the Earth is the cen-

tral issue. If range were the data type of interest, the prob-

lem would be vastly simpler, since velocities would not be

involved. Unfortunately for the analyst, however, range-

rate data is central and must be treated. This particular

problem has proved to be a most formidable analytic en-
deavor.

II. Development of the Observable

One of the most important aspects of this orbital es-

timation problem is to pose it properly. In this regard, the

"binary star problem" of classical astronomy can provide

insight. In attempting to obtain the orbits of a distant bi-

nary star system through the use of spectroscopic Doppler

shifts, astronomers discovered that they could determine

all the elements of the motion except one. The one ele-

ment, which turned out to be completely indeterminate, is

the longitude of the ascending node relative to the plane-

of-the-sky, with the plane-of-the-sky being that plane nor-
mal to the line-of-sight from the observer to the binary

system.

The reason for this indeterminacy is that the binary

star system is effectively "at infinity," meaning that no

significant parallactic motion exists between the observer
and the observed.

In this problem, the body about which the spacecraft

is in orbit is not "at infinity," but is relatively near. This

implies that there will be some parallactic motion between

the observer and the observed, and hence we should be

able to obtain a "reasonable" solution for the longitude of

the ascending node relative to the plane-of-the-sky. This

parameter will typically be the principal contributor to the

spacecraft state error. As such, classical elements relative

to the plane-of-the-sky appear to be a sensible "eigen"

system in which to solve the problem.



Thegeometryof aspacecraftin orbit abouta distantbodyisdepictedin Fig.1. Let:

rp = yp (1)
Zp

_,= y, (2)
_p

where xp, yp,and zp are the plane-of-the-skyCartesian positioncoordinatesof the spacecraftand xp, yp,and _p are the

plane-of-the-skyCartesian velocitycoordinatesofthe spacecraft.

The orbital coordinates are then defined as:

ro -- (3)

(i)i'o = (4)

with

= a(cos E - e) (5)

,7 = a/_ sin E (6)

= 0 (7)

( ansinE _ (8)
_ = - \ l Z e--_os E ]

( an cosE (9)
i7= \1 - ecosE]

= o (1o)

= vff-e_ (11)

where E is the eccentric anomaly, a is the orbit semi-major axis (kin), e is the orbit ecceniriciLy (dimensionless), and

n is the orbit mean motion (s-l).

The orbital coordinates can be related to the Cartesian, plane-of-the-sky coordinates as follows:

rp =RT(_,w,i)ro (12)

where RT(fl, _, i) is the transpose of the Euler rotation matrix, defined as



=

cos f_ cos w - sin f_ cos i sin w

- cos f_ sin w - sin f_ cos i cos w

sin f_ sin i

sin _ cos w + cos f_ cos i sin w

- sin _ sin w + cos _2cos i cos w

- cos f_ sin i

sin i sin w

)sin i cos w

cos i

(13)

and _ is the longitude of ascending node relative to the plane-of-the-sky, w is the argument of periapsis relative to the

plane-of-the-sky, and i is the inclination relative to the plane-of-the-sky.

To have any hope of analytically solving this problem, all possible simplifications must be made without, of course,

loss of generality. One such simplification will be to define the x-axis of the plane-of-the-sky system to be the line-of-

nodes. This implies that

= o (14)

Thus RT (_, w, i) becomes

COS OJ

R T (w, i) = [ sin w cos i

\ sin w sin i

- sin w 0

Jcos w cos i - sin i

cos w sin i cos i /

(15)

If it is now assumed that the orbital elements are constant in time,

From Fig. 1, it is seen that

_p = Rr(w,i)$o (16)

rd = rp - rT (17)

where:

VgtcosO )
rT = | lint sin 0 (18)

/

\ VRt + PET

VN is the component of the velocity of the target central body relative to the Earth that lies in the plane-of-the-sky;

this shall hereinafter be referred to as the "cross-velocity"

VR is the component of the velocity of the target central body relative to the Earth that lies along the line-of-sight

PET is the distance along the line-of-sight between the center of the Earth and the center of the target central body

at the initial epoch of estimation, i.e., at t = 0

0 is the angle between the cross-velocity and the line-of-nodes

One can now form the range-rate observable, _, as



where

p = Irdl

(19)

(2o)

Therefore,

where

It can then be shown that

Pb = rp. rp -- rp. I'T -- rT" l"pq" rT" I'T

VN Cos0
i:T = VN sin 0

VR

(21)

(22)

rT "rT --" V_V$ -I" V_t -.I- VRPET

rp • _p = a2ne sin E

rp . _T = VN (_al + Oa2) + VR(_ sin w + _/cos w) sin i

rw " _p = VNt(_al + ila2) + (VRt + pET)(_sinw + i/cosw) sin i

where

a 1 = cos 0 cos w + sin 0 sin w cos i

a2 = - cos 0 sin w + sin 0 cos w cos i

Next one has

, ÷rT ,T]

This can be shown to be

P= [a2(1-ecosE)_+ P_T + 2pETVRt + (V_ + V_)t _

--2VNt(_al + Tla2) -- 2(VRt + PET)(_ sin w + _/cos w) sin i] ½

(23)

(24)

(25)

(26)

(27)

(28)

(29)

(30)



For large PET this implies

1 1

P PET [1-t-2VRtPET 2 sin i {_ sin w + r/c°s w} "1"O/PYT )]PET

2

(31)

This then becomes

- _ - -- + + I/cosw
p _ET PET PET

(32)

Combining Eqs. (21), (23)-(26), and (32) yields

_1[Ib _, PET VR -- PET t _ sinw -I- //cosw sini!. + V_rt + a2ne sin E
PET

--VN{ (_ + _t)al + (71 + ilt)a2}--{,sinw + r/cosw}{_ sinw +//cosw} sin 2 i] (33)

From the above, one can observe that

{_ sin w-t-r/cos w} :a{(cosE-e)sinw+flsinEcosw}

{_sinw+C7c°sw} : (l__cosE) {-sinEsinw+ flc°sEc°sw }

(34)

(35)

Combining Eqs. (33)-(35) produces

ansini _ flcos Ecosw}b_ [Vn- (l_ecosEj { -sinEsin_+

+±_,z,_ / _5_in_'-_{_._in_-_o_o_}{_o__-_)_in_+_n _o_}
PET 1, \ 1 - e cos E ]

+ a2ne sin E - VN{ (, + _t)_l + (_l + ilt)a2 } } ] (36)

Now one proceeds to expand the last term of Eq. (36). To do this, Kepler's Equation is needed:

E - e sin E = n( t - Tt, ) (37)

where Tp is the time of periapsis passage.



Without loss of generality, one may assume that Tp = 0. Therefore

nt = E- e sin E (38)

Combining Eqs. (5), (6), (8), (9), and (38) produces

((_ + _t)o,1 + (,1+ _)o,2 }

= a{al (cos E - e - (E - esinE)sinE)_l__-co----s'_ + c_23 (sinE + (E-esinE)cosE)}- e cos E
(39)

The range-rate approximation then becomes

[ ( ansini _{-sinEsinw+3c°sEc°sw)+ 1 ( V_vt+a2nesinEb '_ VR -- 1 -- e cos E ] PE-"'_

( a2nsin2i _{sinEsinw-flcosEcosw}{(cosE-e)sinw+3sinEcosw}

- VNa{al(COsE-e - (E-esinE)sinE)l:-'e co---'sE- + a2/_(sinE+ (E-csinE)c°sE l,' l$:: ,jjj (40)

If one wished to compute an approximation to the actual received range-rate signal, ignoring the motion of the

receiving station relative to the center of the Earth, Eq. (40) would be the expression to use. In this case, however, the

range-rate approximation shall be used for the development of partial derivatives only, and the only partial derivatives of

interest are with respect to the spacecraft state (classical orbital elements with respect to the plane-of-the-sky). Hence,

the elements of interest are a, e, Tp, w, i, and the final element is 19. Note that 0 by our definition is equivalent to the

longitude of the ascending node, fL

Thus those terms in the range-rate approximation which do not contribute to the appropriate partial derivatives

will hereinafter be ignored. Additionally, those terms which contribute negligible partial derivatives will also be ignored.

As a result, the range-rate approximation which shall be used for the computation of the partial derivatives is

a_nsini _ {sinEsinw-3cosEcosw}

_(VNa_( ( (E-esinE)sinE) a2_3(sinEal cosE- e- + + (E - e sin E) cos E) (41)

The partial derivatives with respect to a, e, Tp, w, and i shall be computed from the first term in the range-rate

approximation (since these dominate partials for the same parameters taken from the second term), whereas the partial

derivative with respect to/9 will be computed from the second term (this is the only term with 0 variation).



III. Obtaining the Partial Derivatives

Rewriting Eq. (41) produces

L\i_ecosE)[(a - £ in'h{sinEsinw- flcosEcosw}

--(VNa_ {°tl ( c°sE-e-(E=e-'inE)s'-_inE_,pET] 1 -- e cos E ) +a2/_( sinE+ (E-esinE)c°sE)l ]l=ec_sF,
(42)

To produce the partial of the observables with respect to the classical state of the spacecraft, the partials of the eccentric

anomaly, E, with respect to the classical state are needed. They are

OE) 3(E - e sin E) (43)_a = 2a(1- ecosE)

cgE) sin E (44)-ff_ - (1 -_-_sE)

(1 - e cos E)

= 0 (46)

_- = 0 (47)

_-ff = 0 (48)

Taking partial derivatives of the observable produces

(O_)_a = (_) [{-sinEsinw+flcosEcosw}(l_ecosE)

3(E - e sin E) { (cos E - e) sin w + fl sin E cos w} ]

J

( O_ )__e= ansin i [- cos E {(eos E - e)cosw -_l: e__osE?flsin E sinw}

sin S {(cos E - e) sinw + flsin S cosw} ]
j

(49)

(50)



(0_) [(cosE- e)sinw + flsinEcosw]= -""2 sini L U-G_ J (51)

(_) =ansini[ sinEc°sw+flc°sEsinw]-6-_7o;-_S (52)

(0jb) [sin Esinw- flcosEcosw]_- = an cos i [ _ [-"e _os E-_ J (53)

(0_)__ = _ \(VNa_ [pET] aa{COS E - e ..... (E-esinE)sinE}+a41_{sinE +-1-_-eo----sE (E-esinE)cosE}]l- e cos E (54)

where

a3 = - sin 0 cos w + cos 0 sin w cos i

a4 = sin 0 sin w + cos 0 cos w cos i

(55)

(56)

Again, if one is to get through this problem, one must simplify as much as possible or risk getting lost in the

algebra. A careful examination of the partials detailed in Eqs. (49)-(54) reveals that the first term of Eq. (49), other

than a constant of proportionality, is the same as Eq. (53). Therefore it may be eliminated from Eq. (49) by a change
of variable. Let

a' = a + ( 2t-_/)i=a+(2acoti)i (57)

which implies that

From Eq. (57), one has

(0_aa,) = 1 (59,

(Oi) (1)(tani_= _ = \-%--] (60)

Therefore,

(0_7) : (-32sin i) [ (E-
e sin E) {(cos E - e) sin w + fl sin E cos w}

iz: 7cos -V ] (61)

To obtain the correct partials in Eq. (58), one must carefully discern which of the variables in Eq. (57) are differentiable

parameters and which are not; it is then clear that Eq. (61) represents a considerable simplification of the problem.



IV. Accumulating the Information Array

The normal, Gaussian way by which to obtain the covariance of errors in a set of estimated parameters, F, is stated
as follows:

F= [_-1+ AT WA] -x (62)

where F is the a priori error in the covariance, A is the vector partial derivative of the observable (at the time of

observation) with respect to the parameters being estimated, and W is the weighting matrix. If it is assumed that the

error in the measurement of the observable at time ti is uncorrelated with the error in the measurement of the observable

at time ti, for all i and j, then W becomes a diagonal matrix of dimension equal to the number of observables. From

minimum-variance concepts, the diagonal elements of the weighting matrix may be shown to be just the inverse of the

variance of error in the observable (it is assumed the error process of the observable is stationary and hence that the

variance of error in the observable is constant and unchanging for every data point).

If one assumes the existence of no a priori information, then the error covariance sought, assuming discrete obser-

vations, may be formed as the inverse of the information array:

r = 0x) (63)
I P n=l _kOX)J

where X is the vector of estimated parameters (in this case this is the spacecraft state in classical elements relative to

the plane-of-the-sky), which shall be ordered in the following way:

(X-_ Pl, P2, P3, P4, PS, P6 = O, a _, i, e, Tp, w

and N is the number of data points (observations).

In this case, to simplify the accumulation, continuous observations are assumed, and hence the sums involved will

become integrals. For further simplicity, the accumulation shall be performed over a full orbit period in the time domain

P (in the manner in which "real" data is taken, in equal increments of time), beginning at -P/2 and ending at +P/2.

Since the observable and the partials are all formulated in terms of the eccentric anomaly, E, it is logical to perform the

accumulation with this parameter as the independent variable. From Eq. (37), one has

dt - (1 - e cos E) d E (64)
n

Thus a general information array element, Iij, may be stated as

1 L(O[_) (Op)(1-ec°SE)dE (65)

where a is a scale factor chosen such that the information array, Iq, obtained continuously is the same as that formed

discretely.



To ascertainthe value of a, let X consist of only one parameter, with its attendant partial derivative being a

constant, K. Then the discrete information is just

The continuous information, however, is

Ill = [N]IK2...__[ (66)
L_p J

where P is the orbit period (in seconds).

K2P]

I_l= L_ J (67)

Therefore, for the two informations to be equal, one must have

This, however, implies that

where At is the discrete sample rate (in seconds).

(68)

,_ = At (69)

In the standard case of two-way, coherent range rate as the orbital data type, the discrete sample rate is 60 seconds.

Thus the elements of the information array may now be stated using the continuous formulation as

1 f__'_ (OIJ)(Cg_) (1-ecosE)d Ei,;_ (o,_at) , G _

For simplicity, scaled information array elements, I[j, shall be stated where

(70)

Iij = hj (71)

Note that Eq. (71) implies that when the determinant of the full 6 × 6 information array is computed, to obtain a correct

value, the result must be multiplied by

10



Similarlyfor the cofactors of dimension 5 x 5, the result must be multiplied by

Since the information array is symmetric, only the upper diagonal portion of the array shall be stated.

If one examines Eq. (42), it can be seen that the range-rate value obtained for a certain value of_ is the negative of

that for w + r. The partials will also be of opposite signs. The information array elements will, however, be the same.

Hence the information array must be periodic in _, but go through two full periods as w goes from zero to 360 degrees.

With the complicated nature of the partials, there is a need for a very specific table of integrals to perform the

accumulation. Such a table is provided in the Appendices. With the use of the Appendices, the elements of the

information array can be straightforwardly computed.

Due to the complexity of the information array, any further simplification will be most welcome. We are only

interested in obtaining the variance (standard deviation) of 0, which is the error in the line-of-nodes relative to the

plane-of-the-sky. Any element in the inverted information array (the covariance), Cij, can be stated as

(72)

where D is the determinant of the full 6 x 6 information array, I', with the appropriate constant factors included, and

CoDij is the cofactor of the ijth element of the information array, which is just the determinant of the remaining 5 x 5

array obtained by removing row i and column j from the full 6 x 6 information array, with also the appropriate constant
factors included.

In this case, we are interested in Cn only. This is just

CI I = #_ - Co DI I
D (73)

If it is assumed that there are removable coefficients, al, in each of the ith rows and ith columns of I', and similar

coefficients, bi, coming from the 5 x 5 matrix whose determinant is the CoDa, then

c_=_= c__, __ I
6

I=li=,a_ a,a \ D' )
(74)

where ColY n and D _ are the corresponding determinants with common factors removed.

One can now state the information array, I', to compute D _ and CoDa. The information array, with coefficients

removed, is shown below.

11



where

12

I11 = T + 1 - 2e + (

+ _S(7)+2fl21n_2-_-_)j----_(2-e2)-fla+3efl_+e-l(3--5fl 2) (_--ag

a + a42) = sin 2 0 + cos 2 0 cos 2 i

I_2 = [{ 1 -_ln(1 7)-(1 /_)+_--_j O_'_S(7) + + 2/_ "_sin

f l+fl "_ ½(1 3#)}- _ {(21n(1 + 3')+ 3In t 2-_+e) J + 2e-k - .)(1-

i_ 3 _[sin84_{7_+24_ 2 _" l+fl /1( )]-- e _-_In [, 2-_ + e) J J sin 0 cos 2w - cos 0 cos i sin 2w

1 + 13 fl) } sin 01_4= [(_-_){ln{2(l+e)}+2-fl(l+

f 1+/_ _ e4}(sin0cos2w cos#cosisin2w)]+ (_--_fl) {(2 - e2) In [ 2_-1-__-_j + (2e2 - 1)(1-/_) + 2e -

, r(l+2eh (2+e-f(1+2e)'_ (sin0sin2_,_+cos#cosicos2w)]

i_o=fl[cosOcosi_(72+2+_ln{ 1+/_ })( )]e 2(1 + e) sin 0 sin 2w + cosOcosicos2w

[{ }(2 + e2) 6 In(1 + 3') + 3 - e) _-_-_(/3 + 2/_ + 3)/_2 = -_ S(3')- _ _-_(1 -

e2

-,o_ {T#_S(3')+ --(2-5e2) in(1+3')+ (l-e)(2+e 2) 1 (I+19)(3-19)_]

J]

]i_ 3= -e + l-k#) 1-T-e eos_

[1 {1 1 } cos2w{_(5_14/_+9/_,)+ _

(75)

(76)

(77)

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)



1 1 - 3/_2 + sin 2_
zh= _ , (1+_)_ J

I_6 '1 + e I Yr _ sin 2w

I]3 = 1 - (1-_)1-fl c¢m2_

(1 - p)

I._6= (1--_)1- fl sin 2w

' 1 [2(3 + _) + (I - _)' cos 2w]-144 = 4fl3(1 + fl) (1 + fl)

(1-fl) sin2w
I_6= e_(1+z)

1_5= _-_ 2(2 + e2) - e2cos 2_o

1

I;6= _-ff

1_6 1+ 1-_

(86)

(87)

(88)

(89)

(90)

(91)

(92)

(93)

(94)

(95)

(96)

(97)

where the removable coefficients, of course, turn out to be the coefficients of the individual partial derivatives, which are

__
_ \ P---_-T/ (98)

a2 = ('-32 sini ) (99)

a 3 = an COS i (I00)

a4 = ansini (101)

a5 = -an 2 sin i (102)

a6 "- ansin i (103)

13



From these scale factors and Eq. (71), one can infer that the error in 0 may be written as

[
_o= _ L VN(a)¼Or)_ Lg(e,i,e,_)J

where f(e, w) is the cofactor of/_11, and g(O, i, e,w) is just the determinant, LY.

(104)

V. Inverting the Information Array

Since the interest is in a single element of the inversion, only those computations required in Eq. (74) shall be

performed. Before plunging into the general elliptic case, the inversion for the special case of the circular orbit (i.e.,

e -- 0) shall be demonstrated.

A. Circular Case

After much work, the elements of the information array (in the limit as e tends to zero) can be shown to be:

1(.__ .au) (105)I_1 .---- (¢ + 1)(.2 + Of 42) --

/I "2

I_ = _ sin 0 (106)

1( )I_3 = sin 0 + _ sin 0 cos 2w - cos 0 cos/sin 2w (107)

1( )I[4 = sin 0 - g sin 0 cos 2w - cos 0 cos isin 2w (108)

1
el5 = cosOcosi- _(sinOsin2w + cos Ocos icos 2w) (109)

1
II6=eosOcosi- _(sinOsin2w+cosOcosicos2w) (110)

_r2 1

II= = --_- _cos2w (111)

1

113 = _ cos2w (112)

1
114 = 1- _ cos 2w (113)

1
Its = -_

1

I_3 = I_4

sin 2w (114)

sin 2w

Ih = i_. = & = _;. = i_ = o

(115)

(116)

(117)

14



Toperformtheinversionin thisspecial,circularcase,it isnecessarytoremovetheparameterw from the estimation

since the argument of periapsis is indeterminate. Additionally the parameter Tp is removed from the estimation since

the partials are large and the same as those of w, only with the opposite sign. This rank reduction corresponds to

assuming that the true anomaly of the spacecraft at epoch is perfectly known, which is realistic in comparison to the

error in 0. With a large amount of algebraic manipulation, the four-parameter inversion yields an error in 6 of

where

[
os = o'_ L Vg(a)¼(r)½ J Lg(O,i,w)J

r,-; 1 13 ]f(w) = IT - 1 + _ cos 2w - _-_ cos 2 2w

(118)

(119)

g(O,i,w)=(cos_Ocos2i) 31 ]9 [7r4 - _r2 cos 2w - 13_r2 cos 2 2w 47 6112 - --6- + T cos 2w - T c°s2 2w (120)

It is now apparent from Eqs. (118)-(120) that the use of range-rate data for state estimation of a circular orbit about a

distant planet can yield singular results. Singular state errors will result if

0 = 90 deg, 270 deg, and/or

i = -90 deg, 90 deg, and/or

VN= 0

(121)

(122)

(123)

This latter condition of singularity may occur when the spacecraft is orbiting a superior planet (at the beginning and end

points of retrograde motion). These are important results, which are significantly at variance with orbit determination

experience for highly eccentric trajectories, which appear well behaved and certainly not singular. Note that even with

zero eccentricity, the results of Eqs. (119) and (120) imply a functional dependence upon w. This is an artifact of the

definition of the coordinate system at time zero. If we assume w = 90 deg, then the maximum variation in the error

in 0 for any other value of w can be shown to be 13.6 percent. Thus the error in 19can be said to be only "weakly"

dependent upon w.

B. Elliptic Case

Many thanks go to R. J. Muellerschoen of the Navigation Systems Section for his help in using MATHEMATICA

to attempt the 6 × 6 inversion. Even with a large amount of available memory, the problem quickly consumed it all and

more. Thus it appears unlikely that a "reasonable" functionality for f and g can be obtained in the general elliptic case.

However, in having the information array, we have performed the accumulation in a general manner which will save

much time. A large number of orbit-determination studies as a function of geometry relative to the plane-of-the-sky can

be made quickly and cheaply.
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VI. Results

A. Circular Case

Venus Orbiting Imaging Radar (VOIR), the progenitor of Magellan, was extensively studied many years ago. It

was in these studies that the circular orbit singularities were first observed. The nominal orbit just happened to have

conditions that were near-singular. As a result, orbit determination errors were obtained that were outrageously large

(larger than the nominal orbit). This led to the use of several different computer programs to examine whether there were

program errors or not. The two main programs used to investigate the state estimation were the Orbit Determination

Program (ODP) and the Sequential Orbit Determination (SOD) Program. Both of these pieces of software yielded

the same, poor orbit determination behavior and so confirmed the belief that we had inadvertently stumbled upon

singularities in the orbit determination process for circular orbiters. The important parameters defining the nominal

VOIR orbit were:

Epoch

Semi-major axis, a

Eccentricity, e

Inclination, i

Argument of periapsis, w

Cross-velocity, VN

Target range, PET

Angle, 6

Period, P

March 17, 1982

6552 km

1.52 x 10 -4

78.17 deg (relative to the plane-of-the-sky)

170.7 deg (relative to the plane-of-the-sky)

14.413 km/sec

8.36765 x 10 7 km

85 deg

1.624 hr

The computer solutions were assumed to have as a data base one full orbit of coherent, two-way range-rate data. A

slight problem complicating exact comparison with the theory is that the computer programs employed assumed that

when the spacecraft was not visible to the Earth tracking station, there would be no data available. This eliminated

about 36 minutes of data (depending on the nominal inclination relative to the plane-of-the-sky) out of a total of 98

minutes available. The theory, however, assumes that a full orbit of data is available no matter what. As a result the

displayed errors are not in perfect agreement. The trends as functions of the angle 0 and the inclination i, however, are

in excellent agreement and as seen in Figs. 2 and 3, clearly demonstrate the singular behavior of the circular orbit. The

best place to compare theory and computer results is in Fig. 3 where the value of the inclination relative to the plane-

of-the-sky is small. In this configuration, a full orbit of data would be available to both theory and computer results,

yielding agreement to about 30 percent. As the inclination increases, the agreement between theory and computer

results degrades as more data is occulted. The error parameter displayed in these figures is

Icr l= rcr0= acre (124)

B. Elliptic Case

The orbit determination studies for the general elliptic case are yet to be published. 1

1 For additional information on the initial studies which helped to delineate the circular orbit problems, see the following: J. Ellis
and R. K. Russell, "Earth-Based Determination of a Near-Circular Orbit About a Distant Planet," JPL Technical Memorandum

391-406 (internal document), March 9, 1973; R. K. Russell, "Improved Orbit Determination of Low-Altitude, Nearly Circular
Planetary Orbiters," Engineering Memorandum 391-561 (internal document), April 25, 1974; R. K. Russell, "Analytic Orbit
Determination, A General Methodology and a Successful Example," JPL Engineering Memorandum 314-59 (internal document),

August 9, 1976; and L. J. Wood "Orbit Determination Singularities in the Doppler Tracking of a Planetary Orbiter," Journal of
Guidance, Control, and Dynamics, volume 9, number 4, p. 485, July-August 1986.
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VII. Conclusions

It has been seen that circular orbits about distant planets may suffer singularities in over-all position error estima-

tion. These singularities are due to orbit inclination, placement of the line-of-nodes, and insignificant cross-velocity at

the start and end of retrograde motion when orbiting a superior planet.

Even though these conclusions appear to yield poor state estimation, one should not be unduly alarmed inasmuch as

the stated conditions for singularity are not maintained for extended periods during typical mission scenarios. However,

mission analysts should be aware of these potential pitfalls and realize that spuriously large results for circular orbiters

can be obtained and are not the result of incorrect assumptions or faulty software.

The general elliptic problem appears so involved that analytic inversion at this time is just not feasible, and in any

case the resulting expression for the position error would likely be so lengthy that any understanding would be lost in
the maze.
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Appendix A

Required Integrals I

To perform the accumulation of the information array, a large number of difficult integrals of mixed trigonometric

and algebraic functions and their powers are required. Contained herein are the necessary results. Note that due to the

limits of integration, all integrals of odd functions will vanish.

An important, general integral, from which some of the results contained herein are derived, is

I(a,b,n) = (a+bcosW)n+l - (a__b2)_Pn
(A-I)

where Pn are the Legendre polynomials.

This integral is found in [1; p. 383, 3.661, 4].

For simplicity and convenience, we shall define:

_= Vq--e_ (A-2)

_= (L__) (A-3)

The integrals necessary to perform the accumulation are:

jf__(1 - e cos E)dE = 2_

*(1 - e cos E)cos EdE = -re
7

jf__(1 - e cos E) cos 2 EdE =

jf__ dE = 21r

j(_ cos EdE = 0

__cos 2 EdE = _r

_cos 3 EdE = 0

f__E sin EdE = 2_

l" (;)E sin E cos EdE = -
1¢

(A-4)

(A-5)

(A-6)

(A-T)

(A-S)

(A-9)

(A-10)

(A-II)

(A-12)
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. (1 - _-¢o_E) -

(1 - e cos E) - (1 -/3) = 7

/_:_o_ (_.) (_.)(i--e_-_os_?)- e-_ (1-/3)= _ "r

L __ (•) (-)(i--ec--cosE)- _ (1-/_)2(2+D)- _-fi "r2(2+_)

(1-_¢--_-_E)- _-_ 0-_)_(2+_)= _ v_(2+_)

I_ E sin EdE,1_ e c-_sE,- - (_) In { 2(-11+/3_-e)}

f EsinEcosEdE (?)[ 1 { 1+, }](1 ecosE) =- 1+-In- e 2(1 + e)

f_ EsinEc°s2EdE(-1--- e _'-_ E') = (2-_)_r [e - 4 [l + 1 In{ I+ fl)]]2(1+e)

For a full development of the following integral, see Appendix B.

. (1 - e cos E) - S(7)

where

(A-13)

(A-14)

(A-15)

(A-16)

(A-a_)

(A-18)

(A-19)

(A-20)

(A-2Z)

Continuing,

[_S('/) = + 4 _ (-1)----"7'_ ]
n=l n2 J

(A-22)

. (1 - eeosE) 2 -

f_ co.EdE (2.e'_• (I--_-_E)_"-k_ )

f: cos' EdE ( 21r ) ( 2_r )(]'--e--'_os)2- _ (1-Z)(1+/_-/_2) = _ 7(1+/_-]_')

(A-23)

(A-24)

(A-25)

(A-26)

2O



Z_ E sin EdE

(1-ecosE) 2 = _-

l+e = (1-7)

l+e+ln 2(1+ 0

1 + e 2(1 + e)

f
L
f

I"

E sin E cos 2 EdE

(1 - e cos E) _

E2dE

(1;7-Z_o_E)_= I_3) IS(?)- 4/_ln(1+ 7)]

T E2 dE(1 -'-_¢_s E) 3 =

_ E 2 cos EdE. (T:_o:-E'_=

Z "_E'c°s_EdE (e2-_) [, (_-;_T))_ = (3- 5__

(1 - e cos E) 3 =

cos EdE _ ( 3.e "_
Z_(1-_c-o_Ep \_ /

(1-ecosE) 3 -- (3--2fl 2)

. (1--ec"_sE) 3 = (1-/_)_(3+ 6/_+ 2/_2- 2/73) = 72(3 + 6/_+ 2/72- 2/_a)

f cos4EdE (3r) (3r). (1- _-_o__)_ = _ (1- ZY(1 + 2Z- 2_) = _ _2(1+ 2Z- 2Z_)

Z: E sin EdE 1(l':_a = (_)[]_3 (1 n_e) _]

L Esin Ecos EdE . [1 (I + 2e)]_--_e_-o-_os_--7 = (_.) _-_(I-2f_2)+ O"+'e-_'J

Zr EsinEcos2EdE (_) [ (3+4 0 { I+_ }]. (l_ecosE)3 = _ _3(1-4_)+_-7e- _ 2In 2(-I_-_)

(_) [(3-_)S(7)-12]_'n(l+7'-2e_(1-7)]

+ 2Z_)s(-r)- az(a - aZ:) _,(_+ "r)- _Z(1 - "r)]
J

(A-27)

(A-2S)

(A-29)

(A-30)

(A-3_)

(A-32)

(A-33)

(A-34)

(A-35)

(A-36)

(A-37)

(A-38)

(A-39)

(A-40)

(A-41)

(A-42)

(A-43)
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22

(1 - ecosE)4 -

. (1= _---_L_)_= (5-_)

/_:co_ (_)(1 =_--_sE)4 = _ (5- 4_2)

Z_ cos3 EdE 7re(1 __eeo--"_)4 -- (_) (5 -- 2_ '2)

l: c_,_ (.)(l_e---_) 4 = e-_fl r (1-D)2(5+ 10_- 10/3a-4/_4+2/_ 5)

= (e--'_r) 7_(5+XOfl-lO_-4fld+2fl s)

Z" EsinEdE 7r [ J ](1 _ e--_

_'EsinEcosEdE _" [1 (1 +3e)]_i__ :(_) _(_-_)+_j

; _ (_), (1 - e cos E) 5 - (35 - 30_ _ + 3fid)

" cos EdE (5 _e. (I -ecosE) 5 = \¥_/(7- 3Z2)

/_:¢o.:_(.)(1:7_) 5 = 4--_ (35-35fl 2+4_)

" cos 3 SdE ( 5_'e '__. (1 --e co_) s = \4-_] (7 - 4,6 2)

. (1---_c-_sE) s = (35-40fl2 + 8_)

j[ff EsinEdE r [ _¥ " ('-_e)']

(1-ecosE) s = _ (15-21_ 2+4174)+

2 ](1 + e)_(1 + 3e + 3e 2)

2 (1 + 4e)](1 + e) 4

(A-44)

(A-4S)

(A-46)

(A-47)

(A-48)

(A-49)

(A-50)

(A-Sl)

(A-52)

(A-53)

(A-54)

(A-SS)

(A-S6)

(A-S7)

(A-SS)



_E sin E cos _ EdE(1 - e cos E) s / •--- _ (15- 33fl u + 20/Y4) 2 (1 + 4e + 6e_)](i + _)4

-2e/Y(1 - 7)(57 + 12/t - 10_ 2) + 2e/_2(12 +/_)]

__'r E2cosEdE ( 7r ) [. (_-- _, = _ 15(1- Z=)(7- 3_=)S(v) - 4Z(105- llSZ=+ 16_) ln(_ + V)

-2e/Y(1 - "7)(57 + 12_ - 38/32 - 4/_) + 2e/Y2(12 + B - 4/Y_)]

-2e/Y(1 - 3')(57 + 12/t - 66/32 - 8_ + 12/_4) + 2e/_2(12 +/_ - 8/_)]

(A-S9)

(A-60)

(A-01)

(A-02)
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Appendix B

Required Integrals II

Out of all these difficult integrals, only one class is not expressible in closed form. These are integrals of the form

/: E _ cos 'n EdE_"," = _---_o;-_ (B-l)

We shall confine our interest to the lowest order of the above, namely where n = 1 and m = 0. The other integrals can

be simply obtained from this one, which is

L_ E2dE (B-2)I= 1- ecosE

If the square function is expanded in a Fourier series over the interval -It to _r, one obtains

E2 7r_ [ 1 1 ] (B-3)= -- - 4 cos E - cos 2E + cos 3E ..... _r < E < _r3 _ _ ' - -

This now can be made to yield the integral we are seeking:

f E2dE _ __2 [- dE /'_-_,-1)" (cosnE)1-ecosE 3 J_. 1-ecosE +4 n_ 1--ec-'-_sE
dE

r _--x n=l

2_ + 4 _ (-1)" cosnEdE= _ n2 f7 e%7osE3/_ ,=1

(B-4)

(B-5)

Thus,

T cos nEdE _" cos nEdE• _--_-2 1-ecosE
(B-6)

This latter integral can be found in [1; p. 366, 3.613] as

_o" c°snEdE17e-'c_ E - -_*r(_e _) "
(B-;)
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